首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   38篇
  2023年   4篇
  2022年   5篇
  2021年   16篇
  2020年   6篇
  2019年   7篇
  2018年   16篇
  2017年   11篇
  2016年   19篇
  2015年   16篇
  2014年   19篇
  2013年   27篇
  2012年   46篇
  2011年   49篇
  2010年   26篇
  2009年   22篇
  2008年   25篇
  2007年   28篇
  2006年   28篇
  2005年   12篇
  2004年   17篇
  2003年   22篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有463条查询结果,搜索用时 15 毫秒
91.
92.
93.
94.
Tyramine (TYM) is catecholamine releasing compound and TYM rich food causes hypertensive crisis due to a combination with monoamine oxidase inhibitor (MAOIs). Therefore, analysis of TYM in TYM rich food as (old cheese, cured meat, sausage, pickled olive and canned fish) and the environment is essential for hypertensive patients and to improvement of food industries. In this work, TYM was analyzed in different types of food using novel green synthesis carbon dots from Ficus carica (fig fruits). The gradual addition of TYM to polyamine carbon quantum dots (PA@CQDs) led to enhancement of the quantum dots fluorescence due to formation of hydrogen bonding between quantum dots and TYM. The calibration graph was plotted in the range 5–400 ng mL−1. The method was applied for the determination of TYM in different types of food as old cheese, cured meat, sausage, pickled olive and canned fish. The lower limit of quantitation (LOQ) was found to be 1.68 ng mL−1. The method was successfully applied for the quantification of TYM in varying types of food with high sensitivity and high economic effect due to the reusability of the quantum dots. The optical and morphological characters of quantum dots were studied carefully.  相似文献   
95.
96.
In addition to its classical CD40 receptor, CD154 also binds to αIIbβ3, α5β1, and αMβ2 integrins. Binding of CD154 to these receptors seems to play a key role in the pathogenic processes of chronic inflammation. This investigation was aimed at analyzing the functional interaction of CD154 with CD40, αIIbβ3, and α5β1 receptors. We found that the binding affinity of CD154 for αIIbβ3 is ~4-fold higher than for α5β1. We also describe the generation of sCD154 mutants that lost their ability to bind CD40 or αIIbβ3 and show that CD154 residues involved in its binding to CD40 or αIIbβ3 are distinct from those implicated in its interaction to α5β1, suggesting that sCD154 may bind simultaneously to different receptors. Indeed, sCD154 can bind simultaneously to CD40 and α5β1 and biologically activate human monocytic U937 cells expressing both receptors. The simultaneous engagement of CD40 and α5β1 activates the mitogen-activated protein kinases, p38, and extracellular signal-related kinases 1/2 and synergizes in the release of inflammatory mediators MMP-2 and -9, suggesting a cross-talk between these receptors.  相似文献   
97.
98.
Cellular prion protein (PrP(C)) is an ubiquitously expressed glycoprotein whose roles are still widely discussed, particularly in the field of immunology. Using TgA20- and Tg33-transgenic mice overexpressing PrP(C), we investigated the consequences of this overexpression on T cell development. In both models, overexpression of PrP(C) induces strong alterations at different steps of T cell maturation. On TgA20 mice, we observed that these alterations are cell autonomous and lead to a decrease of alphabeta T cells and a concomitant increase of gammadelta T cell numbers. PrP(C) has been shown to bind and chelate copper and, interestingly, under a copper supplementation diet, TgA20 mice presented a partial restoration of the alphabeta T cell development, suggesting that PrP(C) overexpression, by chelating copper, generates an antioxidant context differentially impacting on alphabeta and gammadelta T cell lineage.  相似文献   
99.
The ClpXP ATPase-protease complex is a major component of the protein quality control machinery in the cell. A ClpX subunit consists of an N-terminal zinc binding domain (ZBD) and a C-terminal AAA+ domain. ClpX oligomerizes into a hexamer with the AAA+ domains forming the base of the hexamer and the ZBDs extending out of the base. Here, we report that ClpX switches between a capture and a feeding conformation. ZBDs in ClpX undergo large nucleotide-dependent block movement towards ClpP and into the AAA+ ring. This motion is modulated by the ClpX cofactor, SspB. Evidence for this movement was initially obtained by the surprising observation that an N-terminal extension on ClpX is clipped by bound ClpP in functional ClpXP complexes. Protease-protection, crosslinking, and light scattering experiments further support these findings.  相似文献   
100.
Regulation of immune response is marked by complex interactions among the cells that recognize and present antigens. Antigen presenting cells (APCs), the antigen presenting cell component of the innate immune response plays an important role in effector CD4+ T cell response. Thermal injury and/or superimposed sepsis in rats' leads to suppressed CD4+ T cell functions. We investigated modulations of CD4+ T cell function by APCs (purified non-T cells) from thermally injured and/or septic rats. Rats were subjected to 30% total body surface area scald burn or exposed to 37 degrees C water (Sham burn) and sepsis was induced by cecal-ligation and puncture (CLP) method. At day 3 post-injury animals were sacrificed and CD4+ T cells and APCs from mesenteric lymph nodes (MLN) were obtained using magnetic microbead isolation procedure. APCs from injured rats were co-cultured with sham rat MLN CD4+ T cells and proliferative responses (thymidine incorporation), phenotypic changes (Flow cytometry), IL-2 production (ELISA) and CTLA-4 mRNA (RT-PCR) were determined in naive rat CD4+ T cells. The data indicate that APCs from thermally injured and/or septic rats when co-cultured with CD4+ T cells suppressed CD4+ T cell effector functions. This lack of CD4+ T cell activation was accompanied with altered co-stimulatory molecules, i.e., CD28 and/or CTLA-4 (CD152). In conclusion, our studies indicated that defective APCs from thermally injured and/or septic rats modulate CD4+ T cell functions via changes in co-stimulatory molecules expressed on naive CD4+ T cells. This altered APC: CD4+ T cell interaction leads to suppressed CD4+ T cell activation of healthy animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号